Robinson's conjecture on Abelian groups
نویسندگان
چکیده
منابع مشابه
Zassenhaus Conjecture for cyclic-by-abelian groups
Zassenhaus Conjecture for torsion units states that every augmentation one torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra QG. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for...
متن کاملQuantum Error-Correction Codes on Abelian Groups
We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملToward the Abelian Root Groups Conjecture for Special Moufang Sets
We prove that if a root group of a special Moufang set contains an element of order p ≡ 1 (mod 4) then it is abelian.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1982
ISSN: 0022-4049
DOI: 10.1016/0022-4049(82)90096-2